Field Observation Report
May X, XXXX

Field Observation by: Y. Kabatski & J. Altmyer, P.E.
Report by: Y. Kabatski
Checked by: Jean Lecordier, P.E.

Project No. XX.XXX.XXX
TABLE OF CONTENTS

- Site Location and Information ... 1
- Inspection Summary .. 3
- Field Observation .. 5
- Transmission Line Summary .. 6
- Tower Mounted Appurtenances ... 8
- Tower Structure Summary .. 10
- Lighting and Conduit Summary ... 11
- Paint and Obstruction Marking Summary ... 12
- Guy Wire and Fittings Summary .. 13
- Initial Guy Tensions Determination ... 14
- Deflection Tabulations ... 15
- Twist and out-of-Plumb Determination .. 15
- Anchors and Foundations summary ... 16
- Grounding Summary ... 17
- Photo Log .. 18
SITE LOCATION AND INFORMATION

Site Address:
WWWW TV-65
1234 Any Street
Hometown, YS 12345

Tower information:
Tower Manufacturer: Dressor Ideco
Tower structure height: 874.5' Guyed
Antenna top height: 948'
Year of manufacture: 1970
Tower finish: Galvanized

GPS Location:
Latitude: N 45° 00' 00"
Longitude: W 122° 00' 00"

FCC registration number: 12341234

Point of Contact:
John Doe
Office: (888) 444-4444
Cell: (888) 444-4444
Directions:

From I-5 South, take exit number 272 to SR 214 East.
From Road 214, take SR 213 north in Silverton.

Tower prints & documentation:

Complete, current tower prints and structural documentation are required as a basis of comparison for plumb and tension measurements made on the tower and as a basis for any structural analysis required prior to increasing the tower load. Current prints should include copies of all original prints and records of any subsequent modifications to the tower structure or load.

Were tower prints made available?

No.

Rating definitions:

POOR: Corrective action required immediately.
FAIR: Corrective action recommended.
GOOD: No action required.
INSPECTION SUMMARY

Tower Engineering Corporation was retained by XYZ Broadcasting to conduct a field observation of the 948-foot guyed tower. J. Altmyer, P.E. and Y. Kabatski performed the field observation on April X, XXXX. The weather conditions were sunny with light winds and a temperature of 67 degrees.

The examination consisted of a full tower climb, examination of the base and an assessment of the tower’s verticality. The full tower climb consisted of a visual examination of the tower members, connections, antennas, coax cables, and mounting hardware. The base examination consisted of a visual observation of the tower foundation, base plates, and anchor bolts. The tower was surveyed from three directions to determine twist and deflection. The guy tensions were checked by Tangent Intercept Method.

Field Findings:

The structural elements of the tower appear to be in fair condition. There is one bent diagonal member on the south face of the tower at the 18-foot level (Photo No. 31). There is also a bent horizontal on the northeast face at the 18-ft level (Photo No. 45). It seems a heavy object was dropped on the members from a higher tower level during a recent tower maintenance or installation job. There are numerous locations throughout the height of the tower where the galvanizing is deteriorating and rust is beginning to form on the ladder, conduits and tower member surfaces (Photo Nos. 42-44). The guy wires are showing sign of rust (Photo No. 27). The cotter pins at all guy levels are rusted (Photo No. 27).

The antennas, coaxial cables and associated mounting hardware appear to be in fair condition. The spring hangers of the 6-1/8” rigid line are not properly installed near the following locations: 385-ft, 392-ft, 403-ft, 418-ft, 427-ft and 476-ft levels (Photo No. 34). The top bracket of the spring hangar is unbolted at the 843-ft level (Photo No. 33). There are no rigid line support brackets near the 410-ft, 435-ft and 452-ft levels (Photo No. 35). There is one abandoned 7/8” line on the ice bridge (Photo No. 36), one abandoned 1/2” line on the southwest leg at the 13-ft level (Photo No. 31), two lines (1/2” and 7/8”) on the southwest leg at the 88-ft level (Photo No. 37), one 7/8” line on the southwest leg at the 123-ft (Photo No. 38), one 7/8” line on the north leg between the 268-ft and 310-ft levels (Photo No. 39), one 1/2” line on the southwest leg between the 293-ft and 318-ft levels (Photo No. 40) and one 1/2” line on the northwest face at the 528-ft level (Photo No. 41). Some coax cables are connected to the tower by electrical wire on the southwest leg (Photo Nos. 32 and 38).

The exposed surface of the concrete pad at the tower base is in good condition. The tower base is grounded with ground wires attached to the base plate and leading into the nearby soil (Photo No. 3). In general, the grounding straps were properly installed.
with gradual bends. There are two broken grounding wires at the north and southwest inner guy anchors (Photo Nos. 29 and 30). The southeast inner anchor and the North and southwest inner and outer anchors are missing the second set of washers and cotter pins (Photo No. 28).

Recommendations:
The 948-foot guyed tower located near Hometown, YS appears to be in fair condition. The following steps should be taken to keep the tower in good condition and to provide a safe working environment:

Within Six Months

1. Replace the damaged diagonal member with a new same size solid rod member at the 18-foot level (south face). Also, replace the damaged horizontal member at the 18-foot level (northeast face) with a new same size tubular member. A temporary brace must be installed before replacing the existing members.

2. Remove all abandoned cables from the tower.

3. Properly connect the lower bracket of the spring hanger to the rigid line near the following levels: 385-ft, 392-ft, 403-ft, 418-ft, 427-ft and 476-ft.

4. Install the rigid line support brackets near the 410-ft, 435-ft and 452-ft levels.

5. Repair the unbolted spring hangar near the 843-ft level.

6. Properly secure the coaxial cables to the tower on the southwest leg of the tower.

7. Replace existing rusted cotter pins with new same size galvanized cotter pins at all guy levels on the tower.

8. Repair the guy anchor grounding system at the north and southwest inner guy anchors.

9. Install the second set of washers and cotter pins at the north outer and southwest inner and outer anchors.

10. Wire brush all rusted areas on the tower members, antenna mounting hardware and climbing ladder to a bare metal surface and coat the exposed steel with a cold-galvanizing compound for temporary protection.

Within Two Years
11. The tower should be completely painted within the next 2 years in order to protect the exposed steel. We recommend a high-build high-solids epoxy based coating such as CHEMBUILD 135 by the Tnemec Company or Wasser MC-Luster paint.

FIELD OBSERVATION

Site access roads:

The site access road is a gravel road off Any Street. There is a key-locked gate.

Access to Tower:

The site is fenced with a key-locked gate.

Access to Anchors:

Access to all anchors is through a flower field. The anchors are not fenced.

Hoist Emplacement:

Hoist placement can be on any face of the tower

Site sketch with tower, anchors, buildings and north arrow:
TRANSMISSION LINE SUMMARY

General condition:

Fair.

Description of transmission lines:

The transmission lines for the antennas come out of the adjacent building and on to the tower at approximately the 10-foot level and are distributed on three legs of the tower (Photo No. 2). The lines consist the following:

- (1) 6 1/8" Rigid Transmission Line
- (1) 5" Coax Cable
- (1) EW64 Coax Cable
- (1) EW63 Coax Cable
- (4) 1/2" Coax Cable
- (8) 7/8" Coax Cable
- (2) 1" O.D. Conduit
- (1) 2" O.D. Conduit

Were dents or abrasions observed?

No

Were support hangers in order and secure?

No

Was loose hardware observed?

Yes

Are all elbows aligned and supported properly?

Yes
Coax Routing Plan:

Ice Bridge Diagram:

Note: See Appurtenance List for TX line sizes as designated by number
TOWER MOUNTED APPURTEANCES

General condition of antennas:

Good.

Was any loose hardware found?

No.

Was any misalignment or physical damage noted?

No.

Were de-icers operational and checked?

Not checked
Appurtenance List:

<table>
<thead>
<tr>
<th>EXISTING APPURTEANCES</th>
<th>ELEVATION</th>
<th>LOCATION</th>
<th>FEEDLINE</th>
<th>FEEDLINE #</th>
<th>PHOTO #</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEACON</td>
<td>949'</td>
<td>CENTER</td>
<td>1" Conduit</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>73' TOP TV ANTENNA</td>
<td>875'</td>
<td>CENTER</td>
<td>6-1/8" Rigid</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>PLATFORM</td>
<td>860'</td>
<td>NE FACE</td>
<td>N/A</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(3) STROBES</td>
<td>862'</td>
<td>ALL LEGS</td>
<td>2" Conduit</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>(3) OBSTRUCTION LIGHTS</td>
<td>810'</td>
<td>ALL LEGS</td>
<td>1" Conduit</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>(3) OBSTRUCTION LIGHTS</td>
<td>668'</td>
<td>ALL LEGS</td>
<td>1" Conduit</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>(3) STROBES</td>
<td>580'</td>
<td>ALL LEGS</td>
<td>2" Conduit</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>BEACON</td>
<td>535'</td>
<td>N LEG</td>
<td>1" Conduit</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>(3) OBSTRUCTION LIGHTS</td>
<td>397'</td>
<td>ALL LEGS</td>
<td>1" Conduit</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>4' STANDBY TV ANTENNA</td>
<td>297'</td>
<td>NW FACE</td>
<td>5" Coax</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>12' WHIP ANTENNA</td>
<td>293'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>(3) STROBES</td>
<td>287'</td>
<td>ALL LEGS</td>
<td>2" Conduit</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>BEACON</td>
<td>268'</td>
<td>N LEG</td>
<td>1" Conduit</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>20' WHIP ANTENNA</td>
<td>260'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>8' STD DISH W/RAD</td>
<td>262'</td>
<td>N LEG</td>
<td>EW63</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>15' WHIP ANTENNA</td>
<td>185'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>6' STD DISH</td>
<td>175'</td>
<td>S LEG</td>
<td>EW63</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>15' WHIP ANTENNA</td>
<td>130'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>(3) OBSTRUCTION LIGHTS</td>
<td>128'</td>
<td>ALL LEGS</td>
<td>1" Conduit</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>15' WHIP ANTENNA</td>
<td>112'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>8' 4-BAY PANEL ANT.</td>
<td>104'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>3' GROUNDPLANE ANT.</td>
<td>62"</td>
<td>SW LEG</td>
<td>1/2" Coax</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>1.5' YAGI ANTENNA</td>
<td>48'</td>
<td>SW LEG</td>
<td>7/8" Heliax</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
TOWER STRUCTURE SUMMARY

General condition of tower:

Fair

Were any loose or missing bolts observed?

No

Were any loose members observed?

No

Were any missing or damaged members observed?

Yes

Were all climbing facilities and platforms secure?

Yes

Is safety climb secure and in good condition?

Yes

Were signs of unusual stress or vibration observed?

No

Were any bent or damaged gusset plates observed?

No

What is the condition of the tower base concrete?

Good
LIGHTING AND CONDUIT SUMMARY

General condition:

Good

Lighting Manufacturer: Flash Technology
Type system: Red/White Light
Strobe Beacon Model: FTB-205-10S
AOL Model: Airport Equipment AC 150/5345
Controller Model: Unknown

Wiring condition:

Good

Were fixtures in order?

Yes

Were bulbs in good condition and were all lights working?

Yes

Were drain holes and breathers clear?

Yes

Were any signs of rust, moisture, or corrosion observed?

Yes. Conduits are rusted.

Is system mechanically secure?

Yes

Was photocell and flashing mechanism operating properly?

Yes
PAINT AND OBSTRUCTION MARKING SUMMARY

General condition:

Tower is galvanized, not painted.

FAA or ICAO color marking condition:

N/A

Is the tower galvanized?

Yes

Is rusting evident?

Yes

Is painting necessary?

Yes
GUY WIRES AND FITTINGS SUMMARY

General condition:

Fair

Were end fittings secure?

Yes

Were the bolts, pins, and cotter pins secure and in good condition?

No.
The cotter pins are rusted at all guy levels. The southeast inner anchor and the North and southwest inner and outer anchors are missing the second set of washers and cotter pins.

Was rusting evident?

Yes

Was vibration observed?

No
INITIAL GUY TENSIONS DETERMINED BY THE TANGENT INTERCEPT METHOD
948' GUYED TOWER

Date: 4-May-05
Weather Conditions: 5-10 mph wind, clear, sunny, mid. 67 degrees F

I = Estimated Tangent Intercept (ft.)
W = Total weight of guy, including insulators, etc. (lb)
V = Vertical distance from guy attachment on tower to guy attachment at anchor (ft)
H = Horizontal distance from guy attachment on tower to guy attachment at anchor (ft)
C = Distance from guy attachment on tower to center of gravity of weight, W (ft); approx H/2
Ta = ((W*C*(H^2+(V-I)^2)^.5))/(H*I)
Ta = Guy Tension at anchor

A - Southwest
B - North
C - Southeast

<table>
<thead>
<tr>
<th>WIRE</th>
<th>SIZE</th>
<th>BREAKING STRENGTH (k)</th>
<th>I</th>
<th>W</th>
<th>V</th>
<th>H</th>
<th>C</th>
<th>Ta (lbs.)</th>
<th>% BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>0.875</td>
<td>92</td>
<td>11.25</td>
<td>772.38</td>
<td>161.51</td>
<td>385</td>
<td>193</td>
<td>14224</td>
<td>15.5</td>
</tr>
<tr>
<td>2C</td>
<td>0.9375</td>
<td>108</td>
<td>25</td>
<td>1073.8</td>
<td>336.51</td>
<td>385</td>
<td>193</td>
<td>10663</td>
<td>9.9</td>
</tr>
<tr>
<td>3C</td>
<td>1.0625</td>
<td>138</td>
<td>33</td>
<td>1517.29</td>
<td>511.51</td>
<td>385</td>
<td>193</td>
<td>14156</td>
<td>10.3</td>
</tr>
<tr>
<td>4C</td>
<td>1</td>
<td>122</td>
<td>64.9</td>
<td>1747.76</td>
<td>702.21</td>
<td>632</td>
<td>316</td>
<td>12085</td>
<td>9.9</td>
</tr>
<tr>
<td>5C</td>
<td>0.9375</td>
<td>108</td>
<td>82.8</td>
<td>1740.67</td>
<td>877.21</td>
<td>632</td>
<td>316</td>
<td>10670</td>
<td>9.9</td>
</tr>
</tbody>
</table>
DEFLECTION TABULATIONS

<table>
<thead>
<tr>
<th>Position On Tower Leg</th>
<th>OBSERVED DATA</th>
<th>CALCULATED DEFLECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tower Face Width (A, IN)= 84</td>
<td>(- = Left, + = Right)</td>
</tr>
<tr>
<td></td>
<td>Instrument to Leg Distance (FT)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>676</td>
<td>704</td>
<td>666</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
</tbody>
</table>

Average Horizontal Angle (DEC. DEG.)

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
</tr>
</tbody>
</table>

BASE

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1ST GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.9960</td>
<td>0.0030</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.57</td>
<td>0.44</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2ND GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.9950</td>
<td>359.9970</td>
<td>359.9920</td>
</tr>
<tr>
<td>-0.71</td>
<td>-0.44</td>
<td>-1.12</td>
</tr>
</tbody>
</table>

3RD GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0020</td>
<td>359.9990</td>
<td>359.9920</td>
</tr>
<tr>
<td>0.28</td>
<td>-0.15</td>
<td>-1.12</td>
</tr>
</tbody>
</table>

4TH GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.9980</td>
<td>359.9900</td>
<td>359.9850</td>
</tr>
<tr>
<td>-0.28</td>
<td>-1.48</td>
<td>-2.09</td>
</tr>
</tbody>
</table>

TOP

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.9900</td>
<td>359.9860</td>
<td>359.9860</td>
</tr>
<tr>
<td>-1.42</td>
<td>-2.07</td>
<td>-1.95</td>
</tr>
</tbody>
</table>

TWIST AND OUT-OF-PLUMB DETERMINATION

<table>
<thead>
<tr>
<th>Position On Tower Leg</th>
<th>CALCULATED Twist</th>
<th>CALCULATED OUT-OF-PLUMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>DEG</td>
</tr>
</tbody>
</table>

BASE

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1ST GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.04</td>
<td>0.00</td>
<td>-0.05</td>
</tr>
<tr>
<td>0.26</td>
<td>-0.52</td>
<td>0.58</td>
</tr>
</tbody>
</table>

2ND GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.76</td>
<td>-0.02</td>
<td>-0.89</td>
</tr>
<tr>
<td>0.39</td>
<td>0.05</td>
<td>0.39</td>
</tr>
</tbody>
</table>

3RD GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.33</td>
<td>-0.01</td>
<td>-0.39</td>
</tr>
<tr>
<td>0.56</td>
<td>0.61</td>
<td>0.83</td>
</tr>
</tbody>
</table>

4TH GUY

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.28</td>
<td>-0.03</td>
<td>-1.52</td>
</tr>
<tr>
<td>0.36</td>
<td>1.00</td>
<td>1.06</td>
</tr>
</tbody>
</table>

TOP

<table>
<thead>
<tr>
<th>Leg A</th>
<th>Leg B</th>
<th>Leg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.81</td>
<td>-0.04</td>
<td>-2.14</td>
</tr>
<tr>
<td>-0.07</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.74</td>
<td>0.44</td>
<td>0.44</td>
</tr>
</tbody>
</table>
ANCHORS AND FOUNDATIONS SUMMARY

General condition:
 Good

Is exposed concrete protected?
 Yes

Was any corrosion observed?
 Yes on the hairpin nuts and grounding clips.

Were there any signs of movement?
 No

Was any erosion observed?
 No

Were base and anchor nuts tight?
 Yes.
 Southeast inner and north and southwest inner and outer anchors are missing the second set of washers and cotter pins.

Were anchors clear of brush and trees?
 Yes

Height of anchor foundations above ground:
 3-ft

Are anchors fenced?
 No
GROUNDING SUMMARY

General condition:
Fair

Were any loose straps or wires found?
Yes.
There are two broken grounding wires at the north inner and southwest inner guy anchors

Is the tower grounded properly?
Yes

Was corrosion observed?
No

Was lightning rod in place?
Yes
PHOTO LOG

Photo No. 1 - Overall view of the tower.
Photo No. 2 – Compound view.

Photo No. 3 – Tower base.
Photo No. 4 – View up northeast face of the tower.

Photo No. 5 – View up south face of the tower.

Photo No. 6 – View up northwest face of the tower.
Photo No. 7 – Typical tower section.

Photo No. 8 – View of a typical leg splice connection.

Photo No. 9 – View of a typical diagonal and horizontal connection to the leg.
Photo No. 10 – View of the small Yagi antenna mounted on the southwest leg at the 48-ft level.

Photo No. 11 – View of the 3’ Groundplane antenna mounted on the southwest leg at the 62-ft level.
Photo No. 12 – View of the 8’ 4-bay Panel antenna mounted on the southwest leg at the 104-ft (center) level.

Photo No. 13 – View of the 15’ Omni antenna mounted on the southwest leg at the 112-ft (base) level.
Photo No. 14 – View of the 15-ft Omni antenna mounted on the southwest leg between the 130-ft and 145-ft levels.

Photo No. 15 – View of the 6-ft Dish mounted on the southwest leg at the 175-ft level.
Photo No. 16 – View of the 15-ft Omni antenna mounted on the southwest leg at the 185-ft (base) level.

Photo No. 17 – View of the 20-ft Omni antenna mounted on the southwest leg at the 260-ft (base) level.
Photo No. 18 – View of the 12-ft Omni antenna on the southwest leg at the 293-ft level.

Photo No. 19 – Shows the 8-ft Dish on the north leg at the 262-ft level.

Photo No. 20 – Shows the 4-ft Andrew Stand-by TV antenna on the northwest face at the 297-ft level.
Photo No. 21 – View of the top-mounted TV antenna at the 875-ft level.
Photo No. 22 – View of a typical obstruction light on the tower.

Photo No. 23 – View of a typical strobe light.

Photo No. 24 – View of a typical beacon light.
Photo No. 25 – View of a typical inner guy anchor.

Photo No. 26 – View of a typical outer guy anchor.
Photo No. 27 – View of a typical guy wire connection to the tower. Note the rusted condition of the cotter pin. Also note that the guy wire is showing signs of rust.

Photo No. 28 – View of the north outer anchor. Note missing the second set of washers and cotter pins.
Photo No. 29 – Shows the broken grounding wire at the north inner anchor.

Photo No. 30 – Shows the broken grounding wire at the southwest inner anchor.
Photo No. 31 – Shows the bent diagonal member on the south face between the 10-ft and 18-ft levels. The abandoned 1/2" coax cable at the 13-ft level is also visible in this picture.

Photo No. 32 – Shows the inappropriate coax cable connection to the tower on the southwest leg. This connection using electrical wire was typical throughout the tower.
Photo No. 33 – Shows the unbolted top bracket of the spring hanger at the 843-ft level.

Photo No. 34 – Shows the spring hanger at the 385-ft level. Note that the spring hangers of the 6 1/8” rigid line are not properly installed near the following locations: 385-ft, 392-ft, 403-ft, 418-ft, 427-ft and 476-ft levels.
Photo No. 35 – Shows the missing connection of the rigid line to the tower member. Note that there are no rigid line support brackets near the 410-ft, 435-ft and 452-ft levels.

Photo No. 36 – View of the abandoned 7/8" line on the ice bridge.
Photo No. 37 – View of the abandoned 1/2” and 7/8” lines on the southwest leg at the 88-ft level.

Photo No. 38 – View of the abandoned 7/8” line on the southwest leg at the 123-ft level.
Photo No. 39 – View of the abandoned 7/8” line on the north leg between the 268-ft and 310-ft levels.

Photo No. 40 – View of the abandoned 1/2” line on the southwest leg between the 293-ft and 318-ft levels.
Photo No. 41 – View of the abandoned 1/2" line on the northwest face at the 528-ft level.
Photo Nos. 43 - 44 – Show the rusted condition of the tower members. There are numerous locations throughout the height of the tower where the galvanizing is deteriorating and rust is beginning to form on the ladder, conduits and tower member surfaces.
Photo No. 45 – Shows the bent horizontal member on the northeast face at the 18-ft levels.